11799 measured reflections

 $R_{\rm int} = 0.030$

3127 independent reflections

2409 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3'-Di-*n*-propyl-1,1'-[*p*-phenylenebis-(methylene)]diimidazolium dibromide

Rosenani A. Haque,^a S. Fatimah Nasri,^a Madhukar Hemamalini^b and Hoong-Kun Fun^{b*}‡

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 28 June 2011; accepted 1 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.078; data-to-parameter ratio = 26.5.

The asymmetric unit of the title compound, $C_{20}H_{28}N_4^{2+}\cdot 2Br^{-}$, consists of half a 3,3'-di-*n*-propyl-1,1'-[*p*-phenylenenis(methylene)]diimidazolium cation and a bromide anion. The cation is located on an inversion center and adopts an ... AAA... trans conformation. In the crystal, the cation is linked to the anions via weak C-H···Br hydrogen bonds.

Related literature

For details of N-heterocyclic carbenes, see: Herrmann et al. (1998); Zhang & Trudell (2000); Lee et al. (2004). For structures with similar ... AAA ... trans conformations, see: Chen et al. (2007); Cheng et al. (2009).

Experimental

Crystal data

$C_{20}H_{28}N_4^{2+}\cdot 2Br^-$
$M_r = 484.28$
Monoclinic, $P2_1/c$
a = 8.9420 (2) Å
<i>b</i> = 11.2443 (2) Å
c = 11.3536 (2) Å
$\beta = 109.716 \ (1)^{\circ}$

```
V = 1074.64 (4) Å<sup>3</sup>
Z = 2
Mo K\alpha radiation
\mu = 3.78 \text{ mm}^{-1}
T = 296 \text{ K}
0.37 \times 0.35 \times 0.30 \mbox{ mm}
```

Data collection

```
Bruker SMART APEXII CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\rm min} = 0.338, T_{\rm max} = 0.397
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	118 parameters
$wR(F^2) = 0.078$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
3127 reflections	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C7-H7A\cdots Br1$	0.93	2.77	3.6222 (18)	152

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

RAH and SFN thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), a short term grant (304/PKIMIA/639001) and an RU grant (1001/PKIMIA/ 813023). HKF and MH thank the Malavsian Government and USM for the Research University Grant No. 1001/PFIZIK/ 811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5273).

References

- Chen, H.-C., Hu, H.-L., Chan, Z.-K., Yeh, C.-W., Jia, H.-W., Wu, C.-P., Chen, J.-D. & Wang, J.-C. (2007). Cryst. Growth Des. 7, 698-704.
- Cheng, P.-C., Wu, C.-J., Chen, H.-C., Chen, J.-D. & Wang, J.-C. (2009). Acta Cryst. E65, 01825.
- Herrmann, W. A., Reisinger, C.-P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.
- Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhang, C. & Trudell, M. L. (2000). Tetrahedron Lett. 41, 595-598.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2011). E67, o1931 [doi:10.1107/S1600536811026146]

3,3'-Di-n-propyl-1,1'-[p-phenylenebis(methylene)]diimidazolium dibromide

R. A. Haque, S. F. Nasri, M. Hemamalini and H.-K. Fun

Comment

N-Heterocyclic carbene (NHC) ligands have been shown to have wide applicability in coordination chemistry and catalysis. Current research efforts are devoted to the discovery of efficient metal NHC catalysts. For example, chelating palladium complexes of bis(NHC) carbenes have been found to be efficient catalysts in C–C coupling reactions (Herrmann *et al.*, 1998; Zhang & Trudell, 2000). NHC ligands are generally accessible via the deprotonation of imidazolium salts. The preparation of chelating bis(NHC) ligands are also receiving much attention, since they can provide extra air and moisture stability for the metal centers. Several bis(imidazolium) halides, as bis(NHC) ligand precursors, have been synthesized and structurally characterized by us (Lee *et al.*, 2004). We report here the structure of 3,3'-Di-n-propyl-1,1'-(*p*-phenylenedimethylene)diimidazolium dibromide, (I).

The asymmetric unit of the title compound, consists of a half of the 3,3'-Di-n-propyl-1,1'-(*p*-phenylenedimethylene) diimidazolium cation (located on a crystallographic inversion center) and a bromide anion (Fig. 1). The cation adopts the ···AAA··· trans conformation in the solid state. This conformation is the same as that found for the neutral N1,N2-di(2pyridyl)adipoamide ligand which cocrystallizes with water and 2-{5-[N-(2-Pyridyl)carbamoyl]pentanamido} pyridinium hexafluorophosphate (Chen *et al.*, 2007; Cheng *et al.*, 2009).

In the crystal structure (Fig.2), the cations and anions are linked via C7-H7A···Br1 (Table 1) hydrogen bonds.

Experimental

To a solution of 1,4-bis((1*H*-imidazol-1-yl)methyl)benzene (1.0 g, 4.2 mmol) in 15 ml of acetonitrile, 1-bromopropane (1.0 g, 8.4 mmol) was added. The mixture was refluxed at 363 K for 24 h. The resulting white precipitate was filtered, washed with fresh acetonitrile (2 X 3 ml) and recrystallised from methanol to give colorless crystals. Yield :1.3 g, (93%); m.p: 521–523 K. Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the salt solution in methanol at ambient temperature.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Only the unique anion is shown (symmetry code (A): -x, -y+1, -z+1).

Fig. 2. The crystal packing of the title compound, showing weak hydrogen bonds as dashed lines.

3,3'-Di-*n*-propyl-1,1'-[*p*-phenylenebis(methylene)]diimidazolium dibromide

Crystal data

$C_{20}H_{28}N_4^{2+}\cdot 2Br^-$	F(000) = 492
$M_r = 484.28$	$D_{\rm x} = 1.497 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4287 reflections
a = 8.9420 (2) Å	$\theta = 2.4 - 29.8^{\circ}$
b = 11.2443 (2) Å	$\mu = 3.78 \text{ mm}^{-1}$
c = 11.3536 (2) Å	T = 296 K
$\beta = 109.716 (1)^{\circ}$	Block, colourless
$V = 1074.64 (4) \text{ Å}^3$	$0.37 \times 0.35 \times 0.30 \text{ mm}$
<i>Z</i> = 2	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	3127 independent reflections
Radiation source: fine-focus sealed tube	2409 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.030$
φ and ω scans	$\theta_{\text{max}} = 30.1^\circ, \ \theta_{\text{min}} = 2.4^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -12 \rightarrow 12$
$T_{\min} = 0.338, T_{\max} = 0.397$	$k = -15 \rightarrow 15$
11799 measured reflections	$l = -11 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.078$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0366P)^2 + 0.234P]$ where $P = (F_0^2 + 2F_c^2)/3$
3127 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

118 parameters	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.24338 (3)	0.428391 (17)	0.069769 (19)	0.04870 (9)
N1	0.06730 (17)	0.72483 (12)	0.28704 (13)	0.0340 (3)
N2	0.28760 (18)	0.76133 (14)	0.25525 (15)	0.0389 (3)
C1	-0.0905 (2)	0.60075 (16)	0.49714 (17)	0.0358 (4)
H1A	-0.1508	0.6684	0.4960	0.043*
C2	0.0537 (2)	0.47667 (16)	0.40181 (16)	0.0350 (4)
H2A	0.0907	0.4608	0.3360	0.042*
C3	-0.03759 (19)	0.57747 (14)	0.39781 (16)	0.0316 (3)
C4	-0.0764 (2)	0.66197 (17)	0.28836 (18)	0.0383 (4)
H4A	-0.1216	0.6179	0.2110	0.046*
H4B	-0.1547	0.7193	0.2941	0.046*
C5	0.1346 (2)	0.82204 (16)	0.35896 (17)	0.0401 (4)
H5A	0.0933	0.8639	0.4116	0.048*
C6	0.2712 (2)	0.84497 (16)	0.33885 (18)	0.0427 (4)
H6A	0.3420	0.9061	0.3747	0.051*
C7	0.1620 (2)	0.68965 (16)	0.22476 (17)	0.0370 (4)
H7A	0.1434	0.6259	0.1695	0.044*
C8	0.4185 (2)	0.75295 (18)	0.2048 (2)	0.0456 (4)
H8A	0.4123	0.6772	0.1625	0.055*
H8B	0.5189	0.7557	0.2732	0.055*
С9	0.4132 (2)	0.85232 (19)	0.1143 (2)	0.0469 (5)
H9A	0.4181	0.9283	0.1558	0.056*
H9B	0.3139	0.8488	0.0446	0.056*
C10	0.5517 (3)	0.8419 (2)	0.0657 (2)	0.0586 (6)
H10A	0.5471	0.9058	0.0085	0.088*
H10B	0.5457	0.7672	0.0234	0.088*
H10C	0.6499	0.8462	0.1347	0.088*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.06110 (15)	0.03539 (11)	0.05110 (14)	0.00544 (9)	0.02086 (10)	0.00409 (8)
N1	0.0411 (8)	0.0308 (7)	0.0319 (7)	-0.0010 (6)	0.0149 (6)	0.0013 (6)
N2	0.0424 (8)	0.0354 (7)	0.0417 (9)	-0.0021 (6)	0.0176 (7)	-0.0004 (6)
C1	0.0370 (9)	0.0318 (8)	0.0416 (10)	0.0037 (7)	0.0173 (8)	0.0001 (7)
C2	0.0386 (9)	0.0355 (8)	0.0352 (9)	0.0020 (7)	0.0181 (8)	-0.0010 (7)
C3	0.0301 (8)	0.0311 (8)	0.0337 (8)	-0.0039 (6)	0.0109 (7)	0.0001 (7)
C4	0.0357 (9)	0.0406 (9)	0.0382 (10)	-0.0003 (7)	0.0119 (7)	0.0036 (8)
C5	0.0552 (11)	0.0329 (8)	0.0333 (9)	0.0016 (8)	0.0165 (8)	-0.0023 (7)
C6	0.0522 (11)	0.0349 (9)	0.0397 (10)	-0.0072 (8)	0.0138 (9)	-0.0035 (8)
C7	0.0456 (10)	0.0319 (8)	0.0361 (9)	-0.0015 (7)	0.0171 (8)	-0.0009 (7)
C8	0.0416 (10)	0.0456 (10)	0.0545 (12)	0.0018 (8)	0.0224 (9)	0.0055 (9)
C9	0.0471 (11)	0.0496 (11)	0.0484 (11)	0.0004 (9)	0.0219 (9)	0.0047 (9)
C10	0.0566 (13)	0.0693 (15)	0.0598 (14)	-0.0037 (11)	0.0326 (11)	0.0048 (12)

Geometric parameters (Å, °)

1.333 (2)	C4—H4B	0.9700
1.376 (2)	C5—C6	1.341 (3)
1.471 (2)	C5—H5A	0.9300
1.330 (2)	С6—Н6А	0.9300
1.379 (2)	С7—Н7А	0.9300
1.470 (2)	C8—C9	1.508 (3)
1.387 (2)	С8—Н8А	0.9700
1.388 (3)	C8—H8B	0.9700
0.9300	C9—C10	1.521 (3)
1.388 (3)	С9—Н9А	0.9700
1.389 (2)	С9—Н9В	0.9700
0.9300	C10—H10A	0.9600
1.509 (2)	C10—H10B	0.9600
0.9700	C10—H10C	0.9600
108.76 (15)	C5—C6—N2	107.47 (16)
125.17 (15)	С5—С6—Н6А	126.3
125.78 (14)	N2—C6—H6A	126.3
108.44 (15)	N2—C7—N1	108.29 (15)
124.99 (16)	N2—C7—H7A	125.9
126.56 (16)	N1—C7—H7A	125.9
120.18 (16)	N2—C8—C9	111.85 (16)
119.9	N2—C8—H8A	109.2
119.9	С9—С8—Н8А	109.2
120.77 (16)	N2—C8—H8B	109.2
119.6	С9—С8—Н8В	109.2
119.6	H8A—C8—H8B	107.9
	$\begin{array}{c} 1.333 \ (2) \\ 1.376 \ (2) \\ 1.471 \ (2) \\ 1.330 \ (2) \\ 1.379 \ (2) \\ 1.379 \ (2) \\ 1.379 \ (2) \\ 1.387 \ (2) \\ 1.387 \ (2) \\ 1.388 \ (3) \\ 0.9300 \\ 1.388 \ (3) \\ 1.389 \ (2) \\ 0.9300 \\ 1.509 \ (2) \\ 0.9700 \\ 108.76 \ (15) \\ 125.17 \ (15) \\ 125.78 \ (14) \\ 108.44 \ (15) \\ 124.99 \ (16) \\ 126.56 \ (16) \\ 120.18 \ (16) \\ 119.9 \\ 119.9 \\ 119.6 \\ 119.6 \end{array}$	1.333 (2)C4—H4B 1.376 (2)C5—C6 1.471 (2)C5—H5A 1.330 (2)C6—H6A 1.379 (2)C7—H7A 1.470 (2)C8—C9 1.387 (2)C8—H8A 1.388 (3)C9—H9A 1.388 (3)C9—H9A 1.389 (2)C9—H9B 0.9300 C10—H10A 1.509 (2)C10—H10B 0.9700 C10—H10B 0.9700 C10—H10C 108.76 (15)C5—C6—H6A 125.17 (15)C5—C6—H6A 125.78 (14)N2—C7—N1 124.99 (16)N2—C7—H7A 126.56 (16)N1—C7—H7A 120.18 (16)N2—C8—C9 119.9 C9—C8—H8A 120.77 (16)N2—C8—H8B 119.6 H8A—C8—H8B

C1—C3—C4	120.26 (15)	С8—С9—Н9А	109.6
C2—C3—C4	120.68 (15)	С10—С9—Н9А	109.6
N1—C4—C3	110.61 (14)	С8—С9—Н9В	109.6
N1—C4—H4A	109.5	С10—С9—Н9В	109.6
C3—C4—H4A	109.5	Н9А—С9—Н9В	108.1
N1—C4—H4B	109.5	C9—C10—H10A	109.5
C3—C4—H4B	109.5	C9—C10—H10B	109.5
H4A—C4—H4B	108.1	H10A—C10—H10B	109.5
C6—C5—N1	107.04 (16)	C9—C10—H10C	109.5
С6—С5—Н5А	126.5	H10A—C10—H10C	109.5
N1—C5—H5A	126.5	H10B—C10—H10C	109.5
C2 ⁱ —C1—C3—C2	-0.7 (3)	N1—C5—C6—N2	-0.3 (2)
C2 ⁱ —C1—C3—C4	-179.54 (16)	C7—N2—C6—C5	0.5 (2)
C1 ⁱ —C2—C3—C1	0.7 (3)	C8—N2—C6—C5	179.06 (17)
C1 ⁱ —C2—C3—C4	179.54 (16)	C6—N2—C7—N1	-0.4 (2)
C7—N1—C4—C3	92.7 (2)	C8—N2—C7—N1	-179.02 (16)
C5—N1—C4—C3	-80.3 (2)	C5—N1—C7—N2	0.2 (2)
C1—C3—C4—N1	110.19 (18)	C4—N1—C7—N2	-173.88 (15)
C2—C3—C4—N1	-68.6 (2)	C7—N2—C8—C9	107.5 (2)
C7—N1—C5—C6	0.1 (2)	C6—N2—C8—C9	-70.9 (2)
C4—N1—C5—C6	174.13 (16)	N2-C8-C9-C10	179.05 (18)
Symmetry codes: (i) $-r - \nu + 1 - \tau + 1$			

Symmetry codes: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C7—H7A···Br1	0.93	2.77	3.6222 (18)	152

Fig. 1

Fig. 2